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The first treatment of the problems of jet flows with consideration of 
the forces of gravity and of surface tension is due to Zhukovskii [ 11. 
It turned out that from the mathematical point of view both problems 
were similar. Zhukovskii produced exact solutions of one example for the 
case of a heavy fluid and another example (flow past a gas bubble between 
two walls) for the case with consideration of surface tension. Exact so- 
lutions of the problems of jet flows of a heavy fluid were also obtained 
subsequently to Zhukovskii’s paper by others (for example, N. Bervi, 
Richardson). The only other paper dealing with the problem of jet flow 
with consideration of capillary forces known to me, besides the paper by 
Zhukovski~, is the paper by KcLeod 13 1. KcLeod, evidently, did not know 
about Zhukovskii’s paper f 1 f and using a new method investigated a 
particular case of the latter’s problem. 

Recently Voronets 13 1 has suggested the use of a method of perturba- 
tions for the solution of jet problems of a heavy fluid. The work of 
Voronets has been continued by Gurevich and Pykhteev [4 1. In this paper 
an attempt is made to apply the method of small perturbations to the 
solution of jet problems with consideration of capillary forces in order 
to reveal more precisely the possibilities of the jet theory. The author 
also discusses the question of the superposition of linearized capillary 
waves upon jet flows. Inasmuch as the work is of an exploratory charac- 
ter. the author has lisited himself to the investigation of the above 
problems, using as an example one of the simplest problems in jet theory. 

1. Flow eonfiguration. We shall investigate the plane problem of 

the efflux of a symmetrical jet of a weightless ideal incompressible 

fluid from an opening in a wall. In the derivation of the boundary con- 

ditions we shall take into account the forces of surface tension. 
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Consider one half of the jet-flow region and substitute a solid wall 
for the axis of synvnetry which coincides with the x-axis CA (Fig. 1). 
‘lbe total width of the opening equals 21. Let the thickness of the 
entire jet he 2.8. ‘lhe most important characteristic of the flow is the 
coefficient of contraction of the jet k = S/l. 

2. Boundary conditions on the free surface. Let pl and p be 
the pressures in the atmosphere and in the fluid, respectively. We denote 
by R-the radius of curvature of the free surface and by a the coefficient 
of surface tension. Then, we have the known relationship 

If 8 is the angle between the velocity and the x-axis, w = $J + i+ the 

PI=Pf+ (2.1) 

complex potential function, ds the differential arc length, v the velo- 
city vector and v,, the velocity vector at infinity at the point A, then 

1 d0 v d0 __=-=- 
R ds d9 

(3.2) 

The curvature of the free surface of the jet is directed upward, hence 
R > 0. Bernoulli s integral 

P 

where p,, is the pressure at 

yields 

- p0 =+,2 - 9) 

infinity at YC 
I 

(2.3) 

the point A. If we limit ourselves to the 
case when capillary waves are not present, 
then we have p,, = pl, i.e. at infinity c 
R = 00. From (2.1), (2.2) and (2.3) we 
have 11 1 

au g = 4 (9 - vo”) (2.4) 
Fig. 1. 

We define the flow in the jet above the x-axis by q = v&S, and shall 
introduce nondimensional quantities V and a defined as follows: 

cl 

@=O -, I e--q 
v=$, a= -= -& (2.5) 

PW 

c A 8 c Then from (2.4) we obtain 

V2 -2a~qv-1 =o 

Since Va = ,, = 1, we have 

(2.6) 

We can try to solve the problem by the method of successive approxi- 
mations, taking a to be a small parameter. In this paper only the first 
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two approximations will be considered. 

3. Solution of the problem in the absence of capillary 
forces (a = 0). TO solve the problem to at least the second approxi- 
mation, the problem must be solved first to the first approximation in 
the absence of capillary forces. 'lhe solution of the problem is well 
known. It may be found in any book on hydrodynamics which contains even 
a cursory account of the theory of jets. For the sake of brevity in the 
present paper we shall state this solution with derivation in a form 
suitable for subsequent treatment. 

In order to obtain a general solution of the problem it is sufficient 
to map the regions of variation of the complex potential 10 and the 
Zhukovskii function o into the upper half-plane of the parametric vari- 
able t (Fig. 2) 

0 = 111 dw_ -_ 
vi)& lnV- i0 

The region of variation of the complex potential w is represented by 
a stripe of width q. (Let ~4 = q on CBA, then we have t,!~= 0 along the 
wall CA). From the conformal transformation of this strip onto the half- 
plane we readily obtain 

w(t)=-+X(t+1)+iq (3.1) 

Formula (3.1) may be verified directly. Differentiating (3.1), we 

find 
dw Q __=- 
dt Jz (1 4-q (3.2) 

If the width of the opening is not varied with transition to subse- 
quent approximations, the flow rate in the jet will necessarily be 
different in different approximations. It is convenient when proceeding 

to the next approximation to keep the flow q fixed and correspondingly 

to vary the width of the opening. Then the quantity q in 
the same in all approximations. 

'Ihe regions of variation of w and z will be different 
approximations. We define 

(z),=, = 21, (O),z0 --: o1 - In (~1~ / z+J - 

On CA (t<- 1) we have Im o1 = - 6 = 0; on AB (-1 
function or is a pure imaginary quantity, on BC (t > 11 
n/2. 

'lhe function o,(t) has the form 

(3.1) will be 

for different 

iQ, 

< t < 1) the 
Im o1 = - 8, = 
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Equations (3.3) may be verified directly. To do this it is sufficient 
to observe the variation of o1 and dw/v,,dzl along the real part of the 
t-axis. 

4. Determination of 0 for a given V. We find o(t), assuming 

that in the interval - 1 < t < 1 of the real axis the dependence of V(t) 

is known. Let us introduce an auxiliary function: 

Q=C-cOo, (4.1) 

The function a may be found using by the methods of thin-wing theory 
[S I. The boundary conditions on the real 

t>l Im o=n/2 Im ol=n/2 Im &=O 

-l<t<l Re o=lnV Re q=O Re Q=lnV 

t<-1 Im o=O Im al=0 Im Sk0 

t-axis for w, o1 and Q are 

presented in tabular form: 

The function !A(1 - t2)-li2 
vanishes for t + = and on the 
real t-axis its real part is 
known everywhere. Therefore 
we can determine it by the 
Schwarz formula for the upper 
half-plane, which in accord- 

ance with the table of boundary values of Cl(t) gives 

Then separating the imaginary part of (4.21, expressing In V (~$1 in 

terms of de/d+ with the help of (2.6) and eliminating then d+ (see 

(3.2)), it is easy to obtain for 8 the integral-differential equation 

ln IaqdO ldv + VI + ~%*(d0/d~)*l dE 
I/f---s” (E - 1) 

The solution of the problem will now be presented in second approxi- 
mation without, however, resorting to the use of this equation. 

5. Solution of the problem in the second approximation. To 
find the Zhukovskii function in the second approximation with the help 
of (4.2) it is first necessa 

7 
to find V(t) for this case. When neglect- 

ing the quantities of order a in (2.61, assuming 8 = 8, and using (3.21, 
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we find 

From this and from (4.2) we obtain in second approximation 

In order to calculate the integral in Equation (5.1) we differentiate 
the latter with respect to the parameter ul. We obtain 

Making the substitution (1 + ~$)~“(l - Z_)-l” = q, we can reduce the 
integral to the integral of a rational fraction. ‘lhe calculation of this 
integral yields 

Q=ln’2+a1 
i 

-$E\ +$C?6(al; t) 

-- - 

@(a,, q = \ 
li’ In fnl1/1 + t /.jfl- tl da 

l-t--_~~(l+t) I 
; 

(5.2) 

6. Calculation of the coefficient of contraction of the 
jet, Fran Figs. 1 and 2 we have 

t-1 

l--8= 
! 
* dy (6.41 

f= --I 

In order to find the contraction coefficient of the jet k = S/l we 

calculate the integral on the right-hand side of (6.1). From (4.1) it 
follows that 

From this, by the use of (3.2)) we find 

(6.2) 

Or upon using (5.2) and making simple transformations 
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dz = - 6(1/1-t--ii/l-+-t) 
-- exp( - $-1/i=?-_ (a,, t) )dt .-_ ____ 

n)/2(1 S%T/l + t /1/1--t, (I+ t) 
(6.3) 

Separating in (6.3) the real and imaginary parts and neglecting as 
small the quantities in terms of higher orders of aI, we have 

Substituting dy from (6.3) into (6.1), we obtain 

8 
1 

1 - 6 =---{JI + Jzft where J, =: i-c 1/z (6*5) 

1 

(l-4 43 (a14 J2=$\ _ 

_l VI -t-t (I+ f-Qvl/t/1/1--) 
dt (6.6) 

‘ihe integral J, is not difficult to calculate exactly, when it is re- 
duced to an integral of a rational fraction. After discarding in the ex- 
pression obtained the quantities of higher order in aI, we obtain 

J, = 2J.991 - a,) + 0 (aI” In aI) (6.7) 

Excluding an infinitely small region about the point t = 1, the 
following approximation is used for the calculation of the integral Jz: 

Hence 

Thus, from Equation (6.4) we obtain that 

l-6 -_$ {I + 2a1t ” - aI [I + -$- + f In 2]} 

and the coefficient k(a) in terms of the new parameter a = 2al/n is 

‘Ihe factor n(n + 2) = k(O) is equal to the coefficient of contraction 
for the case of zero forces of capillarity. The parameter a may be re- 
presented in the form 
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0. a u cf. (2 + n) a = - = pclJ% (a) = pZ?Qk (0) = ____ PZ’O% ph&t 

Hence Equation (6.8) may be reduced to the form 

Or 
k(a) = k(O){1 ++-$n a f[yn, + JC + 2 + 21n 2]} (6.9) 

k b-4 z 0.611 
I 
1 +?$-$[2 In 0’3~‘Voa + 6.52]} (6.10) 

7. Capillary waves on the surface of a flow of finite 
depth. 'Ike solution derived above is not unique, because there may 
exist capillary waves on the free surface. It will be shown below how 

the flow with capillary waves of small amplitude may be superimposed on 
a given flow. 

First of all we must investigate the behavior of the complex velocity 
at infinity, i.e. in the vicinity of point A. To this end let us consider 
the problem of capillary waves of small amplitude, which move along the 
surface of a fluid flow of finite depth (Fig. 3). ‘lhe theory of capillary 
waves of small amplitude is a well-investigated part of hydrodynamics 

[6 I; nevertheless we shall consider the solution of this problem brief- 
ly in order to reduce it to a form suitable for our purposes. 

Consider sinusoidal waves of small amplitude. Let 6 be an average 
depth of a flow and u0 the velocity at some point of inflection D of the 
curved surface of the sinusoidal wave. The rate of flow q equals v,,S to 
within terms of higher order. On a free surface Equations (2.1) and (2.2) 
must be satisfied. Since at the point DR = oo, the atmospheric pressure 
p1 at this point is equal to the pressure of the fluid, and Equation 
(2.4) may be utilized as a boundary condition on the free surface. 

It is evident that at the bottom, which we shall consider to coincide 
with the x-axis, the vertical y-component of the velocity vanishes. 

Let w be a complex potential. Let 
us look for a solution in the form 

dW 
= vo[l - xA sinXtW LcFo)] (7.1) ’ 

i A 
dZ 1 . 

where A, K and $ are real constants 
and Z = X + iY. Amplitude of the wave Fig. 3. 
A is considered to be a small quantity. 
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‘Ihe values of w at the bottom are real and on the free surface Im w = 
q!~ =. ~~8. It is seen from,(?.l) that for real values of w the complex 
velocity dw/dZ= v”ewie = vy - ivy, is also real, i.e. the vertical 

to satisfy the bound- velocity component is zero. Ii’ remains, therefore, 
ary condition on the free surface $ = v,S. 

Let us write the boundary condition (2.4) in a 
replacing 8 by 8’ and v = va by v”, we obtain 

linearized form. When 

(7.2) 

Since on the free surface I = q5 + ivoS 

voe-i90 = 2, 

0 {I - xA sin [e (cp + cpo) + ina]} 
= v, 

1 
1 - xA sin $ (cp +rp,) cash 6x - ixA cos z (rp $ cpo) shh Xb) 

From this, neglecting quantities containing higher orders of the 
small amplitude A, we find 

v” = v 0 i--- i 
xA sin 5 (cp f cpo) cosn x81, 0” = xA cos -$ (cp + qo) sinh x8 

Substituting these expressions for v” and O” into (7.2), we obtain 
after obvious cancellations 

x tanh x6 = $ (7.3) 

Equation (7.3) determines the frequency K, at which small sinusoidal 
capillary waves are possible. For relatively small a and sufficient 
depths tanh ~6 3 1 and K J pv02/a >> 1. 

‘lhe region of variation of the complex potential w wholly coincides 
with the region of variation of the complex potential w considered in 
the foregoing sections. Let us map the region w upon the upper half- 
place of the parametric variable t. 

In this case Equation (3.1) may be used. We have 

dw 
x = vo { 

1 - xA sin + 
[ ( 0 

- Sin (1 + t) + iv06 i- qoj]} (7.4) 

Let us introduce the function 

o* =ln$ = 1nV” - itY 
” (7.5) 

If we now add a0 to the previous Zhukovskii function o = o1 + Q and 
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take the function 0 = ol. + Sz f o0 as a new Zhukovskii function, then 
this function together with the complex potential w from (3.1) will de- 
termine a certain jet flow with capillary waves on its free surface. 
However, in this case the jet would not emanate from an opening in a 
plane, but from an opening in some curved wall. Let us therefore change 
the Zhukovskii function once more by adding to o1 + !J + w” an additional 
term w+, correcting thereby the boundary conditions without changing the 
capillary waves at infinity. Therefore, Ist us consider the final 
Zhukovskii function and try to determine w+. 

w = w, $ Q -j- ijl:s -r fr), Z l,l I.= _ it) 
(7.6) 

8. Determination of the additional function o+ = V+ - i6,. 
The function o+ is holomorphic in the upper half-plane of the parametric 
variable t. Let us find the boundary conditions for it on the real t- 
axis. 

At the bottom AC the real values of w are valid, where t < - 1 and 
we have 

Hence, in accordance with Equations (7.4) and (7.5) we have Im o” = 
8O = 0. Since along the bottom necessarily Im o = 0, it follows from 
this and from (7.6), in accordance with the table of the boundary values 
of Section 4, that 

0, 1 0 for t<--l. (8.1) 

On the wall BC(t ,> 1) we have 8 = - Im o = - n/2. From (7.4) and 
(7.5), neglecting higher orders of the small amplitude, we find 

‘Ibis equation together with the values of the imaginary parts of o1 
and Q (see Table in Section 4) gives for 0+ the boundary condition 

- Im w, = 0, = - x-4 co3 I-- $11~ (1 + t) -I- F] sinh x6 for t > I (8.2) 

Next consider the boundary condition (2.4) on the free surface. In a 
linearized form it may be written as follows (compare with (7.2)): 

a <$ = pv, (V - 1) (8.3) 
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where d6~~d~ in accordance with the chosen method of solution is a 
small quantity in comparison with d@,/dqb. 

Condition (7.3) shows that K is large, i.e. that the frequency of the 
capillary waves is large. Therefore, in differentiating with respect to 
$ there appears a new large factor K. 

Let us assume that @+-varies uniformly together with + and approaches 
zero when + + a0 . Iherefore, now we may assume that dO+/d$ is small in 
comparison with dOO/d$. Hence 

On the other hand 

In V = In V, + In Vz + In V” + In V,, or ‘I/’ = V,V,V”V, 

Consequently, in accordance with the solutions obtained above (see 
Sections 5 and 4) and Equations (7.2), we find 

(8.5) 

since according to (2.5) aq = a/puO and for small Y+ - 1 we have V+ = 1+ 
ln V+, then from (8.31, (8.4) and (8.5) we find up to higher-order terms 

From this we obtain the boundary conditions on the free surface 

lnfi, = Cl for -l<t<l 

Thus, the problem of determination of o+ reduces to the known problem 
of finding the function of a complex variable, holomorphic in the upper 
half-plane subject to the condition that Im o+ of the function (see 
(8.1)) and (8.2) is given along a portion of the boundary, and that 
Re o+ (see (8.6)) is given on another portion of the boundary. 

In order to solve this problem we introduce the auxiliary function 

o,ld(t2 - 1). In the case of this function its imaginary part will be 
given on the real t-axis. ?he Schwarz equation for the upper-half-plane 
gives 

a3 

=shx&“A 
’ 

s 
cos It--- X?J /’ IX) In (1 + 5) + xcpo / co] df 

n 1/p=-l (g - t) 
(8.7) 

1 

In the expression for o and o+ there are two unknown constants A and 

d 0’ 
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